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Abstract- Based on a general representation of displacement variation through the thickness of
laminated plates, a Karman type nonlinear theory of laminated composite plates with weakened
interfacial bonding is developed. Each weakly bonded interface is modelled by a spring-layer model
which has recently been used efficiently in the field of micromechanics of composites. This spring­
layer model allows for a discontinuous distribution of displacements, but requires the tractions to
be continuous across each interface of adjacent layers. The set of governing equations has variable
coefficients in the most general form of bonding and includes conventional third-order zigzag
nonlinear theory of Karman type for laminated composite plates as a special case when extreme
values of interface parameters are used. Some simple numerical examples allowing for a closed­
form solution are presented to give an understanding of how a small amount of interfacial weakness
affects the overall and local behaviour of laminated composite plates. These include the important
practical problem of reduced interface stresses due to weakened interfacial bonding. which can be
predicted by the theory presented herein. ;£~ 1997 Elsevier Science Ltd.

I. INTRODUCTION

It is well known that gross theories of laminated composite plates and shells fail to predict
local elastic responses at the ply level sufficiently accurately. This is because continuity of
tractions is not imposed on interfaces of adjacent laminae, despite the fact that transverse
shear stress is one of the most important causes of delamination in laminated structures.
To overcome this problem, various zigzag theories, alternatively termed simplified discrete­
layer theories (Noor and Burton, 1989) or refined single-layer theories (Reddy and Robbins
Jr, 1994) have recently been proposed, see Di Sciuva (1986, 1987, 1992), Di Sciuva and
Icardi (1993), Savithri and Varadan (1990,1993), Librescu and Schmidt (1991), Gaudenzi
(1992), Cho and Parmerter (1992, 1993, 1994), Xavier et at. (1993), He (1993, 1994,
1995) and Schmidt and Librescu (1994). The displacement field assumed is such that the
displacements and tractions are continuous at layer interfaces. This continuity can be used
to reduce the total number of unknown parameters in the theories. Such approaches
formulate a multilayered plate model of the discrete-layer category for which the total
number of generalized displacements does not increase with the number of layers. This
number is usually five, as in most smeared theories such as first-order equivalent single­
layer theory or Reddy's (1984) third-order theory.

In contrast to their metallic counterparts, the anisotropic constitution of laminated
composite structures often results in unique phenomena that can occur at vastly different
geometric scales, i.e., at the global level, the ply level or the reinforcement-matrix level. The
equivalent single-layer theories are generally capable of describing the global response
sufficiently accurately, whereas at the ply level discrete-layer and zigzag theories are needed
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to determine the three-dimensional stress field. At the reinforcement-matrix level, micro­
mechanics of composites has emerged as a critical research area investigating the proper­
ties of random or deterministic heterogeneous particulate and fibrous composite materials.
The present paper proposes a geometrically nonlinear theory which is completely general
when applied at ply level and only requires that the elasticity constants of each layer
have been determined either by experiment or from micromechanics techniques. Particular
attention is paid to multilayered anisotropic plates with imperfect layer interfaces.

It has been widely observed that the behaviour of composite materials is significantly
influenced by the properties of the interfaces between the constituents. A perfect interface,
which implies continuity of displacements and tractions across the interface, is assumed in
the majority of work on composite materials, with the result that interface properties and
structures are eliminated. However, there are many applications where the assumption of
a perfect interface is inadequate. Examples for laminated composites could be the presence
of a thin layer between adjacent ply layers or a coating on the surface of the reinforcing
constituent. Such an interfacial layer is generally referred to as an interphase. Such inter­
phases may be introduced to inhibit chemical interaction between the constituents or to
improve the properties of the composite. In the limit of vanishing interphase-thickness,
displacement jumps occur when crossing the interphase from one side to the other, while
the tractions must remain continuous from simple considerations of equilibrium. The
simplest way of representing this is to assume that the jumps in normal and tangential
displacements are proportional to the corresponding tractions, giving a spring-layer model.
Such a model has recently been applied in micromechanics-based research on imperfect
interfaces of composites at the reinforcement matrix level, e.g., see Benveniste (1985),
Aboudi (1987), Achenbach and Zhu (1989), Jasiuk and Tong (1989), Benveniste and
Dvorak (1990), Hashin (1990, 199Ia,b, 1993) and Qu (l993a,b). However, this paper
concerns itself with one area which has received very little attention and yet has significant
ramifications for practical structures, namely the effects of weak bonding at the ply level of
laminated composites. See also Mao and Han (1992) and Schmidt and Librescu (1995).

The theory presented incorporates the most important interfacial properties into a
geometrically nonlinear theory of Karman type for multilayered anisotropic plates. Each
interface between adjacent layers utilises the spring-layer model employed in micro­
mechanics. An important feature of this paper is the use of such a model in macro­
structural analysis. As will be shown, the use of this model in the two-dimensional theory
of multilayered plates and shells avoids the physically impossible phenomenon of inter­
penetration at the interfaces. However, this model might lead to such interpenetration
within an elastic, three-dimensional approach, as discussed briefly by Achenbach and Zhu
(1989), although more accurate models may be found to overcome this problem. An
approximate displacement model is given which includes displacement jumps across each
interface and thus enables interfacial imperfection to be incorporated. As it satisfies the
compatibility conditions for transverse shear stresses, both at layer interfaces and on the
two bounding surfaces of the plate, there is no need for the use of shear correction factors.
Furthermore, the number of unknowns is eventually shown to be five, irrespective of the
number of layers. The set of governing equations has variable coefficients when considering
non-uniform bonding strength at each interface and constant coefficients when the bonding
is uniform. In the limit of vanishing interface parameters, this theory in linear dynamic or
nonlinear static form reduces to exactly the flat plate limit of zigzag theory for multilayered
anisotropic shells given by He (1994, 1995). Some simple numerical examples are presented
to illustrate the effects of a small amount of interface weakness on the overall and local
behaviour of multilayered plates.

2. APPROXIMATE DISPLACEMENT FIELD

Figure I shows a multilayered plate consisting of k homogeneous anisotropic layers
of uniform thickness. The undeformed lower surface of the plate is chosen as the reference
surface defined by X3 = 0 and the x3-axis is normal to it, where {x;} (i = 1,2,3) is a Cartesian
coordinate system. Let (m)Q (m = 0, ... , k) denote, respectively, the lower surface (m = 0),
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Fig. I. Geometry of a laminated plate.

the interface between the mth and (m + 1)th layers (m = 1, ... , k - 1) and the upper surface
(m = k) of the plate. The range of the mth layer in the xrdirection is [(m-Ilh, (mlhj, where
(mlh (m = 0, ... ,k) is the distance between (OlO and (mlO. Clearly, (Olh = 0 and (klh = h, where
h is the total thickness of the plate.

Throughout the following derivations, a comma followed by a subscript denotes a
derivative with respect to the corresponding spatial coordinate, and a dot over a quantity
refers to a derivative with respect to time, t. The Einsteinian summation convention applies
to repeated subscripts of tensor components, with English subscripts ranging from 1 to 3
while Greek subscripts are either 1or 2. The spatial derivative of the Heaviside step function
H(x3 - (m)h) with respect to X 3 is stipulated as the right-hand one, thus H.3(x3 - (mlh) = O.

Following He's (1994, 1995) general representation of displacement variation, the
displacement vj(xi ; t) of any point in the plate can be expressed as

k-I oc

v(x' t) = '" '" (mlu(nl(x . t)(x _(mlh)nH(x _(m)h)
J l' L..J ~ jet' 3 "3,

m= 0 rl=O

(1)

where the following term has been retained in the present theory, but excluded for perfect
interfaces by He (1994, 1995). Denoting (Olv/xi ; t) == 0, yields

(2)

This term implies that the displacements at interfaces are allowed to be discontinuous, so
as to provide a possible incorporation of imperfect interfaces of multilayered plates, e.g.,
weakened bonding or even delamination. The case of perfect bonding corresponds to this
term being zero.

To incorporate the properties and structures of interfaces in the evaluation of com­
posite behaviour, interfaces must be treated as regions of distinct atomic structure and,
possibly, distinct composition. They should have different properties from the bulk proper­
ties on either side of the interface. In the context of continuum mechanics, one simple
approach is to introduce a thin layer of interphase material which replaces the interface.
The limiting case of vanishing interphase-thickness then gives an interface which is a
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mathematical surface across which material properties change discontinuously, with the
interfacial tractions being continuous while the displacements are discontinuous. Although
nonlinear relationships may be proposed between the interfacial tractions and displacement
jumps, a linear spring-layer model is explored in this paper to characterize the imperfect
bonding. Thus

(m=l, ... ,k-l), (3a,b)

(m = 1, ... , k-l), (4a,b)

where (m) R,f3 and (m) R}} in eqn (4) represent the compliance coefficients of the spring-layer
interface (m)n. It is clear from eqn (4) that (m) R,f3 = 0 and (m)Rj} = 0 correspond to a perfect
interface, while (m) R,f3 -> 'x; and (m) R}} -+ ex) represent complete debonding, i.e., (Ji} = 0 on
(m)n. From this point of view, a slightly weakened interface may be modelled by small
values of (m) R,fi and (m) Rj}. Such an imperfect interface may be due to the presence of an
interphase but could also be due to interface bond deterioration caused by, e.g., fatigue
damage or environmental and chemical effects.

When (m) Rj} = 0, this constitutive characterization of the interface allows relative
sliding between the two surfaces, but no separation. Furthermore, the free-sliding case can
be achieved by setting (m) R,f3 -> 00 with (m) Rj} = O. It should be noted that when (m) Rj} ¥ 0
this mathematical model includes solutions which are physically impossible because one
constituent would have to penetrate another, as noticed by Achenbach and Zhu (1989) and
Qu (1993a,b). This violates the compatibility requirements and therefore the model is
apparently unreasonable for such a case. Fortunately, the normal stress (Jj} for the plate
problem under consideration is assumed to be negligibly small compared with other stress
components, so that it is ignored in the present theory as in most other theories for plates
and shells. This automatically leads to an identity eqn (3b) and a vanishing displacement
jump (m)Av}, see eqn (4b), regardless of the value of the interface parameter (m) Rj}. Therefore
it seems to be reasonable to adopt this spring-layer model in the theory of plates and shells
with imperfect bonding in shear.

Under the assumptions that the normal stress (Jj} for the plate problem is negligibly
small compared with other stress components and that the material symmetry is that of
reflectional symmetry in planes parallel to the reference plane, an approximate displacement
field is given as (see eqns (AlO) and (A6) in Appendix A)

(5a,b)

where uj , <Pi and (m)Av, are independent of X}. The development details of the displacement
field (5) and the expression for f,i are given in Appendix A. The only difference of the
assumed displacement distribution along the thickness from that for perfect bonding is the
incorporation of the displacement jump (m)Ava across each layer interface (m)n, which is
determined as

(6)

from eqns (5), (A3a,c) and (4a). Substituting into eqn (5a) gives the approximate dis­
placement expression

(7)
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(8)

The fact that the interface parameter (171) R,p depends upon xI' implies that the bonding
strength at the interface (m)Q (m = 1, ... ,k- 1) may be non-uniform, i.e., general cases of a
small amount of interface weakness are included in the present theory.

By using the displacement expressions of eqns (7) and (5b), the associated strain and
stress components can be obtained from eqns (A3), but their explicit forms are not given
herein.

3. BOUNDARY VALUE PROBLEM

It is assumed that the mass density p of the plate is independent of time t and that an
arbitrarily distributed normal load q(x,; t) is applied to the surface Q (O)Q or (k)Q). From
Hamilton's principle

the nonlinear dynamic fundamental equations are derived as

N,fJ.fi - fii, + lii}., - I,fJqip = 0,

Ma/i.,/I +q+ (N,/iU}.,)./i - Iii} - lii,.x +Kii3." - (l,/iqi/iL = 0,

PiP.P- Ri. - Ix;a, + lx;ii3., - K(ii.qi{i = 0,

associated with either one of each of the following pairs of boundary conditions

n/iN,p = 0, or iJu, = 0,

n/i(M'fJ.x + N,/I U3., - lii/i + Kii3.p- lp,rf,) = 0, or bU3 = 0,

n/iP,/i = 0, or b<p, = 0,

n/IM,/i = 0, or Im 3 .a = 0,

where

(9)

(10)

(11)

(12)

(13)

(14)

(IS)
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Furthermore, eqns (12) and (13) can be rewritten as, by using eqns (7), (5b) and (A3),

[N" ]
C~1~p -C~~~p C~~~p

C~~" j [ u
w

, +1U'w
U

" ]
Ma(J C~~~p - C~~~vp C~ji~p C~~~p.p U3,wp

(16)=
P),(J C~;2;(J -C;J2),(J Ci~,p CU)

,
!.(Jv qJv.p

R),
C;;2),(J,(J -C~2),(J,(J C~;~ C(8) qJv

AV

where

(17)

(18)

Finally, substitution of eqns (16) into eqns (10) yields

C O) (+1 ) C(2) +(C(3») 1" +J" 1" 0a(Jwp uw,p :1 U3,w U 3,p ,(J - a(Jwp U 3,wp(J,(JvpqJv ,p(J - U, u3,a - a(JqJ(J ,= ,

C (2) ( + I ) C(4) (C(S))
,(Jwp u w.p :2 U3.w U 3,p ,'13 - '(Jwp U 3,wp.,f3 + ,f3vpqJv ,paf3 +q

- Iii3 -Jiia" +Kii3,aa - (Ja(J(P!3),a ,= 0,

C (3) (+! ) C(5) + C(6) + (C(6) C(7) C(7))
wp).f3 Uw.p(J 2 U3,ru U 3,p .Ii - wp).fJU 3,rup(J ).f3vpqJv.p(J ),(Jvp.(J + ),pv - vp). qJv.p

These equations need to be solved with the boundary conditions of eqns (II) to obtain
the unknowns Ua , U3 and qJa for any set of plate parameters and the load parameter q,
Obviously, eqns (19) have variable coefficients simply due to the non-uniform value of
interface parameters (m) Ra(J at the interfaces (m)Q (m = I, ... ,k - I), while for problems with
uniform bonding strength at each interface, eqns (19) will have constant coefficients., By
setting (m) Ra(J = 0 (m = I, ... , k = I), the corresponding governing equations and boundary
conditions become simply those for perfect bonding. In the linear dynamic or nonlinear
static case, they are exactly the same as those given by collapsing the shell theory of He
(1994, 1995) to the corresponding plate case, and are also very similar to those proposed
by Di Sciuva (1992).

4. ILLUSTRATIVE EXAMPLE

The theory presented offers the opportunity to solve a wide range of complicated
problems. However, complete solutions to such problems require the determination of
interface parameters either through theoretical evaluation of interfacial properties and
microstructures or experimental measurements. Since the evaluation of such parameters is
beyond the scope of this paper, an insight into the influence of interfacial weakness on the
global and local behaviour of multilayered anisotropic plates will be given by restricting
attention to the effects of slightly weakened interfaces on their linear bending and vibration
behaviour. A rectangular orthotropic three-ply symmetric laminated plate of length a and
width b will be used as the example for analyzing such interfacial weakness. The plate is



Weakly bonded laminated plates 3589

simply supported at edges XI = 0, a and X2 = 0, b. Identically uniform bonding of the
interfaces is assumed.

Under the action of q = qo sin(ml1rxda) sin(m21rx2/b) exp(iwt) , a closed-form solution
of this problem has the following form

(20)

From these expressions, exact solutions can easily be given for static bending by taking
w = 0 and m l = m2 = I, and for flexural vibration by taking qo = O. For brevity, an overview
of the procedure for obtaining closed form solutions is given in Appendix B.

Two kinds of material were chosen for the numerical computations.

(a) Material I : a (0°/90 0 /0°) laminated plate with identical layer thickness and stiffness
properties

EL/Er = 25, GLT/Er = 0.5, GTT/Er = 0.2, VLT = Vrr = 0.25, (21)

where E is the tensile modulus, G is the shear modulus, v is Poisson's ratio and the
subscripts Land Trefer to the directions parallel and normal to the fibres, respectively.

(b) Material 2 : an orthotropic three-layered plate with (I)h/h = 0.1 and (2)h/h = 0.9, and
identical relative values of the elastic moduli for each layer as

E2222 /E 11 II = 0.543103, E3333/E1111 = 0.530172,

EI122/E1111 = 0.23319, EII33/E1111 = 0.010776, E2233/Ellll = 0.098276,

EI212/EIIII = 0.262931, E1313/El111 = 0.159914, E2323/E1111 = 0.26681. (22)

The interface parameters are taken as (m)R.p = b.pRh/E (m = 1,2), with E = Er for
Material I and E = (2)E11I1 for Material 2, where R is a dimensionless quantity. All of the
numerical results were calculated for Material 1 except Table 2 which is based on Material
2. Table I shows the dimensionless central deflection and stresses for various values of R,
together with comparative exact results given by Pagano (1970) for perfect interfaces
calculated from three-dimensional elasticity. As is well known in the literature, e.g., see Oi
Sciuva (1986, 1992), Cho and Parmerter (1992, 1993) and He (1994, 1995), most theories
for perfectly bonded plates and shells, which make use ofan a priori assumption of through­
thickness displacement distribution, fail to predict sufficiently accurately the transverse
shear stresses for moderately thick and very thick plates directly from the constitutive
equations, even though interface continuity conditions of tractions and displacements have
been imposed. Instead, they are evaluated accurately from the equilibrium equations. In
similar fashion, the trend of curves showing variations of the interlaminar shear stresses
with R calculated directly from constitutive relations seems to be physically unreasonable,
see the work by Cheng et al. (1996). Therefore the transverse shear stresses in Table I, as
well as in Fig. 9, were calculated from the equilibrium equation (J.JJ = O. Some comments on
the use of the"a posteriori" calculation of such components by means of three-dimensional
equilibrium and constitutive relations were given by Noor and Burton (1989). Table 2 gives
frequency values of the plate fabricated from Material 2 when vibrating in its fundamental
flexural mode. The exact three-dimensional elasticity solution obtained by Srinivas and
Rao (1970) is also given for comparison. When the theory is used to consider the special
case of perfect interfaces, the present results for R = 0 in Tables I and 2 are exactly the
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Table I. Central deflection and stresses of a rectangular three-ply plate (alb = 1/3, Material 1) under sinusoidal
loading

ajh R = 0 (Exact) R=O R = 0.2 R = 0.4 R = 0.6

4 2.820 2.75668 3.34194 3.88249 4.36220

] (a b h)100ET h V J 2'2'2 10 0.919 0.91966 1.06740 1.23141 1.40863

qoa4
20 0.610 0.60983 0.64949 0.69499 0.7460B

100 0.508 0.50767 0.50930 0.51118 0.51332

4 1.14 1.20469 1.39003 1.56652 1.72744

2 (a b )h (JII 2'2,h 10 0.726 0.73047 0.77525 0.82590 0.88143

qoa' 20 0.650 0.65067 0.66262 0.67658 0.69244
100 0.624 0.62437 0.62486 0.62544 0.62610

4 0.109 0.10811 0.13184 0.15391 0.17364

o (a b Chr)h"(J2' 2'2' :3 10 0.0418 0.04196 0.04860 0.05604 0.06414

q"a" 20 0.0299 0.02950 0.03131 0.03342 0.03580
100 0.0253 0.02531 0.02539 0.02547 0.02557

h' (J 12 (0,0,0) 4 0.0281 0.02774 0.03233 0.03624 0.03939
10 0.0120 0.01218 0.01359 0.01514 0.01679

qoa' 20 0.0093 0.00929 0.00968 0.01012 0.01062
100 0.0083 0.00832 0.00834 0.00836 0.00838

4 0.351 0.32887 0.29089 0.25454 0.22129

h(J,J (o,~,~) 10 0.420 0.41897 0.40979 0.39934 0.38784

q"a 20 0.434 0.43426 0.43181 0.42893 0.42565
100 0.439 0.43931 0.43921 0.43909 0.43896

4 0.0334 0.03022 0.03498 0.03901 0.04219

h(J23 (~,O,~) 10 0.0152 0.01483 0.01637 0.01806 0.01988

q"a 20 0.0119 0.01184 0.01227 0.01276 0.01331
100 0.0108 0.01083 0.01085 0.01087 0.01089

same as given by Di Sciuva (1992). In that paper, as well as the paper by Cho and Parmerter
(1993), comparison has been made with an exact three-dimensional elasticity solution and
several other plate theories, confirming the high accuracy achieved and the necessity of
using the third-order zigzag approach. Therefore, assessment of the present theory for the
case of perfect bonding is unnecessary.

To show the overall elastic response of plates, the non-dimensional static central
deflection and the first four flexural vibration frequencies are plotted against span-to­
thickness ratio in Figs 2-6. It can be seen that due to weakening of the interfacial bond,

Table 2. Frequency (I"ph 2/(2)EIIII»)"w for the fundamental flexural mode of a square three-layer plate (Material 2)

(llp/(2}p (llEllllt2)EIIII R = 0 (Exact) R=O R = 0.2 R = 0.4 R = 0.6

1 I 0.047419 0.047405 0.047340 0.047275 0.047209
I 2 0.057041 0.057024 0.056820 0.056612 0.056398
1 5 0.077148 0.077135 0.076334 0.075511 0.074671
I 10 0.098104 0.098091 0.096136 0.094161 0.092182
1 15 0.112034 0.112021 0.108953 0.105907 0.102909
3 15 0.094548 0.094519 0.091950 0.089397 0.086882
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the rigidity of plates decreases, which leads to increasing central deflection of static bending
and decreasing frequencies of flexural vibration, for the same plate configuration. As a/h
decreases the static deflection shown in Fig. 2 for bending problems increases faster with
larger values of R, particularly in the range a/h < 30. For the vibration problem, it is seen
from Figs 3-6 that the first four frequencies decrease with decreasing a/h. To give a better
understanding of the way in which local elastic response is affected by weakened bonding,
Figs 7-9 show, respectively, the variation of dimensionless inplane displacement, bending
stress and transverse shear stress distribution through the plate thickness. In practice, the
curing process for certain composites is augmented by introducing a very thin adhesive
layer in the interfaces in order to reduce the interlayer stresses, see Mao and Han (1992).
Figure 9(a,b) confirms this important phenomenon, i.e. the interlayer stress decreases
significantly as the interfacial parameter increases, especially for very thick plates. This is
precisely as expected. However, it is also clear from the theoretical prediction that the
reduction in interlayer stress is achieved at the expense of increases in overall response.

5. CONCLUSIONS

This paper is devoted to modelling the geometrically nonlinear behaviour of multi­
layered anisotropic composite plates, with special emphasis on the possibility of incor­
porating the effects of interfacial imperfection. To do this, each interface between adjacent
layers is characterized by a spring-layer model employed in micromechanics. This approach
is used in a macro-structural analysis environment to model non-uniform and imperfect
bonding at the interfaces of multilayered plates. Uniform bonding is a special case of the
theory and results in the governing equations having constant coefficients. The proposed
theory has the same advantages as conventional high-order theory. Moreover, it reduces
to the zigzag plate theory in the special case of vanishing interface parameters. Numerical
examples reveal the important feature that interfacial stresses are reduced by weakening
the interfacial bond.

Further work is needed on the estimation of interfacial parameters, either by theoretical
prediction of interfacial properties and microstructures or by experiment.
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APPENDIX A

In order to develop a practical theory of multilayered plates, which can model slightly weakened interfaces
but not debonding, eqn (I) is truncated by using the approximationsr1,2,3 for} = IX and m = 0

n = 0, I for} = IX and m=L ... ,k-l,

0 for} = 3 and m = 0, ... ,k-I

(AI)

the displacements can be expressed as

k-I

1', (Xi ; t) = u, + I/I,x] +4',X~+ I},X] + I rim) ~v, + (mIU,(X, - (mlh)]H(x, - (mlh),
m= I

k-l

1',(x i ;t)=u,+ I ,m)~v,H(x,_(mlh),

m= I

(A2a,b)

where (DiU;"), (O)U;'I, (GI U;", (DiU;", (ml u)") and (m l u;" in eqn (I) have been replaced by the quantities u
f
' 1/1" 4'" 11"

(m) ~z;) and (m,u" respectively. Of course, theories developed for calculating delamination need more terms than are
retained by eqns (A2), e.g., see Chattopadhyay and Gu (1994).

The strain, in the sense of Kannan large deflection, and stress components of the plate can be obtained from

(A3a-c)

where e'l and (Ji; are components of the strain and stress tensors, E"kI are components of the elasticity tensor
associated with an elastic anisotropic body, and

(M)

Here, as indicated by Librescu (1975), eqns (A3b,c) hold valid only under the assumptions that each layer
possesses a plane of elastic symmetry parallel to the x, = 0 plane and that (JJ3 is vanishingly small compared with
the other components of the stress tensor.

The assumption of vanishing (J3,leads to, from eqn (4b),

which then gives, from eqn (A2b),

(m)LlV 3 = 0, (m = 1, ... ~ k-l),

V](xi;t) = U,.

(AS)

{A6)

The compatibility conditions of transverse shear stresses on the two bounding surfaces of the plate as well as
at the interfaces are now used to reduce the number of unknowns in eqns (A2a). For simplicity, it is assumed that
no tangential tractions are exerted on (Olf! and {kif!, where eqns (A2a), (A6) and (A3a,c) give the tangential
tractions. Hence

2(1 I k I )'1:x = - - -W:x+ - L (nl)u'J. .

3 h 2h' moo I

(A7)

The condition (3a) for continuously distributed transverse shear stresses at the interfaces leads to, by using eqns
(A2a), (A6), (A7) and (A3a,c),

I [( I.) I' I . A-I ]_Ii) E (il + ((131 1E _iii E ) (I)h- -'''h' 4' + - I Iml
U - _'c)h' I (m)u = 0

2:r.3w3 U"J:dm] '.(3(')] h (!) 2 m= I (I) 2h2 nI=] "J ,

(i= I, ... ,k-l). (A8)
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In fact, eqn (AS) can be regarded as 2(k- I) linear algebraic equations involving the 2(k - I) unknowns (flU,

(i = I, ... ,k-I), which give the following relationship between [i)u, and <Pi

(A9)

in which the ,oa,;, depend only on the material elasticity properties of each layer and are therefore known constants.
Substitution of eqns (A7) and (A9) into eqn (A2a) yields

k-l

C, = u,~,x,uh+f~!.<p;+ I (m)!'J.c,H(x,~(m)h),
m= ]

in which, using the Kronecker delta,

APPENDIX B

(AlO)

(All)

Closed form solutions to the example of Section 4 can be found by substituting eqns (20) into the linear
counterpart of eqns (19), which yields

AX= F. (Bl)

where X = lUi U, U, <D, <D,lT, F = [0 0 -qo 0 O]T, and A is a 5 x 5 symmetric matrix (Au = AJI , J, J = L ... , 5)
where its elements, expressed in terms of I, = m,1[/a and I, = m,1[/b, are

+Jw'+Ui+/j)Kw',

(B2)


